Series workshop summary

Tuesday Morning Modeling SERIES - Ken Denman Tully underway data products – Marie Robert

Brief Thematic group summaries

Then move to new groups

- i) Foodweb dynamics and top-down control
- ii) Fate of the Bloom and Biogeochemistry
- iii) Modeling and observations

Afternoon

SERIES Atmospheric datasets – Moire Wadleigh

General Discussion

- i) Data key elements for bloom / patch evolution
- ii) data management, sharing protocols
- iii) communication meetings and publications
- iv) timeline for 2003 and 2004

Data integration

- i) mixed layer depths use TLD's (0.02 σ_t m⁻¹); SF6 data from Kaiyo Maru; interpolation required of SF6 and σ_t ; photic light depths and mixed layer depths
- ii) Lateral distributions 'top hat' effect look at pCO2, NO3, Fluorescence, FRRF, DFe; (NAS NO3 data 1st hour is suspect); plot Tully SF6 vs. pCO2
- iii) Volume of the patch use TLD and patch dimensions (length and width)
- iv) Patch dilution estimate strain rate; compare pCO2 data from the Tully and the Kaiyo Maru
- v) Slippage what depth of integration is most valid for budgetary estimates; ADCP data – depth bins? 20 m, 50 m and 100 m; ARGO data; floating traps versus drifter trajectories; wind speed data; Moire's Atmospheric data; ship positions (Nelson, Tsuda-san, Marie)
- vi) DMS DMS (Tully) vs. DMS (El Puma) vs. DMS (Kaiyo); Chlorophyll fluorescence (Tully had problems with quenching – 2-3 days of data only); Nutrient data – intercomparisons; need for a map of the OUT stations relative to the nutrient and pCO2 fields – due to W-E variability in nutrient distributions

Data Management

i) Update the SERIES/SOLAS master list with information on what data/data products will be produced/available [PERSON, DATA, ESTIMATE OF AVAILABILITY]

- ii) Data quality meta-data; data-flags; FTP site which is password protected
- iii) Need to add subdirectories to order the data
- iv) Need for a part-time data manager through the Secretariat duties to include cataloging, time-stamping and tracking data versions, data log to monitor access and checks on data updates
- v) When to have the data manager appointed and in place?
- vi) Kaiyo where to have the data repository? On the SEEDS/SERIES website use of data pointers

Data Access and Use

- i) Protocols
- ii) Have 'open data' such as wind speed etc in a different subdirectory
- iii) Implement the C-JGOFS or NOW program data access protocols which have worked well in the past – Richard Rivkin to look out previous protocols

2003/4 Timeline

2003	SOLAS		2004	
	ACTIVITY			
J	DATA		J	
	INTEGRATION			
F	DITTO		F	PISCES Fe
				WORKSHOP; ASLO
Μ	DITTO		Μ	
А	DITTO	SOLAS ATLANTIC	А	
		VOYAGE		
Μ	APPOINT DATA	DITTO	Μ	
	MANAGER			
J		LINE P VOYAGE;	J	
		CMOS		
J		SOLAS ATLANTIC	J	SEEDS VOYAGE
		VOYAGE		
А			А	DITTO
S		LINE P VOYAGE	S	
0			0	SOLAS INTL SCIENCE
				MTG
N		NEW ZEALAND	Ν	
		VOYAGE?		
D			D	

Agenda

'Conferences

Publications – journals, high profile topics, themes and topics

PICES Fe workshop – move to Feb 10-13 2004 (date change to be confirmed by 9 April 2003

3 key questions

- i) E vs. W Pacific comparison
- ii) Key questions for SEEDS II
- iii) Further SERIES synthesis

Immediately preceding the ASLO-TOS meeting in Hawaii (15-20th Feb 2004) Potential co-sponsorship by PICES Special session at ASLO-TOS

May/June 2003 – write abstract for the special session Such as "Effects of iron enrichment of HNLC waters on atmospheric and oceanic processes" OR "SOLAS – the iron connection" OR "Iron enrichment in polar, temperate and tropical HNLC waters

Publication A special issue versus individual papers

If the former, which journal GBC – broad appeal to both marine and atmospheric communities – Bob M to talk with Bill Reeburgh CMOS Biogeochemistry JGR DSR II Prog. In Oceanogr.

Go for JGR, followed by JGR (include some oceanic papers) Editors to reflect 3 ship study

High Impact (up-front) papers

(April 2003) Maurice – DMS, decreases during diatom bloom (June 2003) Philip - Bloom evolution, termination and fate (Summer 2003) Ken model – testing hypotheses

Nojiri and Whitney – differences in calcite data IOS – acidify – are they losing POC? Nojiri – ICPMS

Special volume Provisional titles/themes / expression of interest (* Denotes area of conflict, Kudo – talk with PJH) Rodney Powell – does he use TAC? Takeda

Denman Fe moo	del			
Marchetti/UBC	phyto processes			
	i) chla, POC, C:chla			
	ii) nutrient uptake, nitrate utilisation *			
	iii) 1ry production*			
	iv) d15N			
	v) PAM kinetics			
Levasseur	S model			
Law	i) Patch evolution – large scale physics			
	ii) Patch evolution – patch dispersion and nutrient supply			
	iii) Trace gases			
Rivkin	i) bacterial and microbial dynamics			
	ii) community structure and evolution			
Ianson	Patch model			
Wong	i) CO2 chemistry			
-	ii) pigments			
	iii) sedimentation and C removal			
	iv) Fe distributions and budget			
Nishioka	Fe SEEDS vs. SERIES			
Takeda	FeL			
Sohrin	Trace metals			
Kudo	deckboard experiments (W vs. E)			
	Biological rate processes (1ry prod, BP, 15N uptake)			
Saito	Optics during the fertilization			
	UV			
Miller	DMS photolysis			
Tremblay/McGill	Bacterial dynamics and Fe			
·	Oxidative stress			
	Fe uptake dynamics			
	Elemental stoichiometry			
Ruiz	Thorium dynamics			
	Nutrients and export			
Tsuda	(Nojiri) Fate of the carbon			
	(Tsuda) Mesozooplankton response			
	(Kiosawa) Phyto succession – taxonomy – Seeds and SERIES			
	(Nojiri) Dynamics of pCO2 and nutrients			
Merzouk	Biol rate processes (DMSP/DMS)			
Scaratt	microcosm Fe enrichment experiments			
	DMS/DMSP synthesis			
Wadleigh	Atmospheric DMS			
Leitch	Aerosols			
Sherry	y Synthesis – chlorophyll and production			
Boyd	Photosynthetic competence and Fe stress			
2	Bloom termination and changes in phytoplankton properties			

Not present etc

Trick – flow cytometry Moore – Isoprene and m-halides Whitney – N and Si budget? (Nojiri*) Intro and overview by editors